Supporting Single Cell RNA-seq Analysis: A Core's Perspective

Shannan Ho Sui
Harvard Chan Bioinformatics Core

Webpage: http://bioinformatics.sph.harvard.edu
Email: bioinformatics@hsph.harvard.edu
Common applications of scRNA-seq

• Explore which cell types are present in a tissue
• Identify unknown/rare cell types or states
• Elucidate the changes in gene expression during differentiation processes or across time or states
• Identify genes that are differentially expressed in particular cell types between conditions (e.g. treatment or disease)
• Explore changes in expression among a cell type while incorporating spatial, regulatory, and/or protein information
Growing demand for scRNA-seq support
A Community Approach

Klein Lab
- encapsulation expertise
- analysis expertise
- methods development

Single Cell Core
- encapsulation
- scaling
- experiment design
- standardization
- training

Bioinfo Core
- analysis
- scaling
- experiment design
- standardization
- training

Sequencing Core
- library prep
- sequencing

Researcher
- experimental question
- experimental materials
- experiment design

Harvard Medical School
- funding
Standardizing using reproducible, scalable, validated best practice workflows

Sequencing Samples

Configuration

bcbio-nextgen
Tool Integration
Scaling and resiliency

RNA-seq
Alignment
Quantitation

Analysis
Annotation
Query
Visualization

Quality
Alignment
Coverage

bcbio-nextgen
Python toolkit to automate best practice NGS pipelines
Challenges and Opportunities

- Complex designs - replicates, batches, technologies
- Close collaborations to allow for rapid, iterative analyses
- Rapidly emerging methods and evolving tools
 - Which ones to use?
 - Keeping versions consistent/synchronized (esp. among computing environments)
 - Different results from different methods
 - Lots of open questions
Call this a hot take if you must, but I'm going on record and saying it: differential expression on single-cell RNA-seq is a mess. 10 different methods = 10 wildly different answers with minimal overlap. Hard to believe it's 2019 and we're likely resorting to "called DE by >= 2"
Challenges and Opportunities

- Projects take longer to complete
- Practical approach to training
 - Internal training through retreats, development of materials, group discussions
 - Community training through our Bioinformatics Training Program
Funding

Harvard Chan School of Public Health
Harvard Medical School
Harvard Stem Cell Institute
Harvard Catalyst
National Institute of Environmental Health Sciences (NIEHS)
Harvard University Center for AIDS Research (CFAR)
AstraZeneca
Boehringer Ingelheim