Informatics Challenges Next-generation sequencing

HEMANT KELKAR
Center for Bioinformatics
UNC-Chapel Hill, NC 27599

hkelkar@unc.edu

http://bioinformatics.unc.edu

Now-Generation Sequencing

• > 1,000,000,000 bases (1 GB) per hour

HTS at UNC

- Second half of 2007
- Two Solexa machines
- 100 Mb connection for the entire building
- One window AC unit North Carolina summer
- 700 800 GB data sets become a reality

1. Data volume

We had to improvise ...

1 TB Hard Drives

TIME!

Sneakernet ...

Data .. and more data

- Over a period of almost three years
- and SIX additional Illumina machines later
- \sim 220 flow cells in 2009
- ~ 150 TB of data in 2009

• 150 flow cells in first 6 months of 2010

Challenge for the end-user...

- 3.6G Apr 27 20:13 s_2_sequence.txt
- 6.0G Apr 27 20:20 s_3_sequence.txt
- 6.1G Apr 27 20:21 s_1_sequence.txt
- 5.0G Apr 27 20:21 s_5_sequence.txt
- 6.0G Apr 27 20:25 s_4_sequence.txt
- 4.9G Apr 27 20:30 s_6_sequence.txt
- 5.5G Apr 27 20:42 s_8_sequence.txt
- 5.6G Apr 27 20:42 s_7_sequence.txt

Would you like fries with that ...

- 5.0G Apr 27 20:21 s_5_sequence.txt
- 4.2G Apr 27 20:40 s_5_eland_extended.txt
- 3.6G Apr 27 22:19 s_5_sorted.txt

• 13 **GB** of data **for one sample**

HiSeq 2000

Changes loom in the data landscape .. yet again*

- Image Data − 32 TB (not stored)
- Intensity Data − 2 TB (may want to store)
- Base Call/Quality data − 250 GB
- Aligned Data 6 TB (1.2 TB if intermediates removed)

* Numbers from Illumina

- 1. Data volume
- 2. Network bandwidth

Network Recap

Network under siege

- 1. Data volume
- 2. Network bandwidth → cross-mounting partitions across WAN/VLANs may not be a viable option
- 3. Time

Time

- Time to download/copy/delete/process
- Copying data takes significant amount of time (1-2 GB/min)
- Time to align/assemble 20-30 million reads (e.g. few hours to human genome)
- Hard to do truly parallel software
- I/O bottlenecks

- 1. Data volume
- 2. Network bandwidth
- 3. Time
- 4. Hardware

Hardware

Client side:

- Storage may not be a big issue
- Do remember to have a plan for data backup
- 64-bit OS (Windows, Mac OS X, Linux)
- A dedicated workstation .. if possible

Facility end:

- Storage is a big issue how much/how long/long term
- Data backup strategy (tape, archival disk storage, ILM)
- LIMS
- Data distribution mechanism

- 1. Data volume
- 2. Network bandwidth
- 3. Time
- 4. Hardware
- 5. Sharing/Publishing

Sharing data

- NCBI GEO accepts HT sequence data
- NLM SRA (sequence read archive)
- SRF file format developed at Sanger http://sequenceread.sf.net
- Web .. Bandwidth
- Cloud computing .. Specific storage formats

- 1. Data volume
- 2. Network bandwidth
- 3. Time
- 4. Hardware
- 5. Sharing/Publishing
- 6. Personnel

Acknowledgements

- Center for Bioinformatics Dr. Xiaojun Guan , Dr. Mike Mitchell/Joseph Moran
- UNC HTSF Facility Dr. Mieczkowski, Jesse, Donghui, Elizabeth. Dr. Corbin Jones (faculty advisor)
- University Cancer Research Fund

Fun Times Ahead

