Setting Priorities in the CRI Bioinformatics Core

Matt Eldridge
Head of CRI Bioinformatics Core
CRI Bioinformatics Core

CRUK Cambridge Research Institute
- One of 5 core-funded Cancer Research UK research institutes
- 19 research groups, 7 core facilities
 - Basic research in cancer biology
 - Clinical research on specific cancers
 - Population-based studies in screening and prevention

Bioinformatics Core
- Primary focus on high-throughput genomics platforms
 - *Microarrays* – Illumina & Agilent
 - *High-throughput sequencing* – 3 Illumina GAIIIs
- 8 in team
 - 1 statistician, 3 microarray analysts, 2 HTS specialists, 2 software/db dev
- No cross-charging
- Monitor usage by research group/project
CRI Bioinformatics Core Activities

- Statistical support
- Experimental design

- Primary data analysis
 - microarray QC, spatial defect removal
 - Illumina GA pipeline

- Secondary/downstream analysis
 - Differential expression
 - ChIP-seq peak calling
 - Structural variation, genomic rearrangements
 - SNP and CN analysis
 - microRNA profiling
 - GO enrichment, GSEA

- Training
 - motif finding
 - functional/network analysis
 - microarray analysis

- Data management
 - Solexa storage
 - Microarray database

- Software development
 - Bioconductor packages
 - Beadarray
 - Illumina annotation packages
 - Solexa & microarray LIMS

- Bioinformatics tools
 - Ensembl, Galaxy, Cytoscape
Types of Projects

- **Class I – Short tasks**
 - Typically few hours, well defined output

- **Class IIa – Genomics-based**
 - Analysis of data from Genomics Core
 - Initiated in experimental design meeting
 - Defined output (Sweave report, DE gene list, Cytoscape session)

- **Class IIb – Researcher-based**
 - Follow-on from previous class IIa project or meta-analysis on existing data
 - Initiated by contact from researcher
 - Pre-agreed output and timescale

- **Class III – Research projects**
 - Collaborative, open-ended
 - Poorly defined output

- **Class IV - Infrastructure**
Workload

- Microarrays
 - ~5 projects per month
 - ~30 arrays/samples per project on average

- High-throughput sequencing
 - Primary analysis for 3 GAIIIs
 - 2 x 50bp SE runs per GAII per week
 - Secondary analysis for 1/3 data

- 6 – 12 projects per person at any given time
Managing Workload

- Define & refine process
 - Set expectations
 - Define scope/deliverables

- Project/issue tracking system – Redmine

- Deliver data/output in stages
 - e.g. BED/WIG track within 3–5 days, peaks within 1–2 weeks, downstream analysis results later still

- Standardize and automate data analysis pipelines

- Train researchers to carry out downstream analysis tasks for themselves – classroom, individual, wiki
 - Online functional analysis tools – DAVID, GeneTrail, etc.
 - Motif analysis
 - Cytoscape
 - Galaxy for operating on genomic interval/feature data
 - IGB & IGV browsers for data visualization